基于矢量地图的自主代客泊车定位算法研究Research on AVP Localization Algorithm Based on Vector Map
张天奇;曹容川
摘要(Abstract):
为实现自主代客泊车系统高精度定位功能,提出一种基于矢量地图的多传感器融合定位算法。采用视觉语义特征对自动驾驶车辆周围的环境进行表达,使定位效果能够实现长期的一致性,并将其与矢量化地图数据进行匹配,实现基于视觉输入的绝对位姿的解算。为实现上述功能,提出一种新的匹配策略以解决观测数据和矢量化地图数据表达不一致问题。同时,通过设计合理的误差函数将姿态估计问题建模为非线性优化问题,以获得高精度的解算结果。此外,为提升定位结果的鲁棒性,使用基于误差状态的卡尔曼滤波器将视觉匹配定位的结果与惯性测量单元(IMU)、轮速计的测量值进行融合,得到一种紧耦合的模块化定位方法。基于真实数据的验证结果表明,提出的算法可行,与主流方法相比可以获得更高的性能。
关键词(KeyWords): 矢量地图;匹配定位;自主代客泊车;卡尔曼滤波
基金项目(Foundation):
作者(Authors): 张天奇;曹容川
参考文献(References):
- [1] DURRANT-WHYTE H, BAILEY T. Simultaneous Localization and Mapping: Part I[J]. IEEE Robotics Automation Magazine, 2006, 13(2): 99-110.
- [2] BESL P J, MCKAY N D. Method for Registration of 3-D Shapes[C]// Sensor Fusion IV: Control Paradigms and Data Structures. International Society for Optics and Photonics, 1992.
- [3] RUSINKIEWICZ S, LEVOY M. Efficient Variants of the ICP Algorithm[C]// Proceedings of Third International Conference on 3-D Digital Imaging and Modeling. IEEE, 2001: 145-152.
- [4] SEGAL A, HHNEL D, THRUN S. Generalized-ICP[C]// Robotics: Science and Systems V, University of Washington, Seattle, USA, 2009.
- [5] POMERLEAU F, COLAS F, SIEGWART R, et al. Comparing ICP Variants on Real-World Data Sets[J]. Autonomous Robots, 2013, 34(3): 133-148.
- [6] ZHANG J, SINGH S. LOAM: Lidar Odometry and Mapping in Real-Time[C]// Robotics B: Science and Systems Conference, 2014.
- [7] SHAN T X, ENGLOT B. Lego-Loam: Lightweight and Ground-OptimizedLidarOdometryandMappingon Variable Terrain[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
- [8] WANG H, WANG C, CHEN C L, et al. F-Loam: Fast Lidar Odometry and Mapping[C]// 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
- IEEE, 2021: 4390-4396.
- [9] JIAO J H, ZHU Y L, YE H Y, et al. Greedy-Based Feature Selection for Efficient Lidar Slam[C]// 2021 IEEE International Conference on Robotics and Automation
- (ICRA). IEEE, 2021.
- [10] TONGQ,LIP,SHENS.VINS-Mono:ARobustandVersatile Monocular Visual-Inertial State Estimator[J]. IEEE Transactions on Robotics, 2017(99): 1-17.
- [11] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORBSLAM: A Versatile and Accurate Monocular SLAM System[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-
- 1163.
- [12] MUR-ARTAL R, TARDóS J D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
- [13] CAMPOS C, ELVIRA R, RODRíGUEZ J J G, et al. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM[J]. IEEE Transactions on Robotics, 2020, 37(6): 1874-1890.
- [14] SONS M, LAUER M, KELLER C G, et al. Mapping and Localization Using Surround View[C]// IEEE Intelligent Vehicles Symposium (IV), 2017.
- [15] ENGEL J, KOLTUN V, CREMERS D. Direct Sparse Odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(3): 611-625.
- [16] REBECQ H, HORSTSCH T, GALLEGO G, et al. Evo: A Geometric Approach to Event-Based 6-Dof Parallel Tracking and Mapping in Real Time[J]. IEEE Robotics and Automation Letters, 2016, 2(2): 593-600.
- [17] RANGANATHAN A, ILSTRUP D, WU T. Light-Weight Localization for Vehicles Using Road Markings[C]// 2013 IEEE/RSJ International Conference on Intelligent Robots
- and Systems, 2013: 921-927.
- [18] SCHREIBER M, KNOPPEL C, FRANKE U. Laneloc: Lane Marking Based Localization Using Highly Accurate Maps[J].2013 IEEE Intelligent Vehicles Symposium(IV), 2013: 449-454.
- [19] KNIRSCH F. Privacy Enhancing Technologies in the Smart Grid User Domain[J]. It-Information Technology, 2017, 59(5): 367-381.
- [20] QINT,CHENT,CHENY,etal.AVP-SLAM:SemanticVisual Mapping and Localization for Autonomous Vehicles in the Parking Lot[J]. 2020 IEEE/RSJ International Conference on
- Intelligent Robots and Systems (IROS), 2020.
- [21] SOLà J. Quaternion Kinematics for the Error-State Kalman Filter[EB/OL]. (2017-11-03) [2022-10-13]. https://arxiv. org/abs/1711.02508.